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AIIstraet-lt is shown that the assumption of an elastic, transversely rigid, material gives extended solutions of
the Saint-Venant flexure and torsion problems, rigorously applicably to a linearly varying shear force or
torsional couple, respectively.

The theory is applied in both cases to practical examples. It enables to establish naturally the theory of the
"Timoshenko beam" and shows the position held in Mechanics of Materials by the approximate Timoshenko
Vlasov warpm, torsion theory. In summary, the new approach gives a more scientific foundation to the results
of Mechanics of Materials. The results obtained are especially interesting for materials weak in shear. i.e. those
for which the ratio of the elastic moduli, EI0, is large.

I. INTRODUCTION
Since 1821, Theory of Elasticity and Mechanics of Materials have developed in parallel. The
second doctrine is based on the neglect of the transverse direct stresses, the assumption that
the cross sections are rigid in their plane, which requires the presence of infinitely many cross
frames, absolutely rigid in their own plane and perfectly deformable out of this plane. Under
these conditions, Hooke's law reduces to the two extremely simple relations (J' =E~, l' =Goy. In
addition, elementary Mechanics of Materials neglects usually the effect of shear deformations
on the deformation of beams bent by transverse forces, as well as the shear lag, that is the
unequal distribution of the direct stresses in thin flanges composing the walls of plate-and box
girders.

(I) It can be shown that foregoing results are in reality rigorous results of Theory of
Elasticity for an elastic orthotropic material, that is transversely rigid.

(2) It can also be shown that Navier's formula (T = MylI, which is known to be valid for a
linearly varying bending moment, is still valid for uniformly distributed forces producing a
quadratic bending moment, provided it is corrected by a function a(T(x, y), identical in all cross
sections, and that will be called "distributed shear lag",

(3) The new approach gives a means to determine this "distributed shear lag", which differs
from the usual shear lag by the fact that it does not tend towards zero at the two ends of the
beam. It can therefore be expected to be a good approximation of the actual shear lag, provided
the beam is sufficiently elongated.

(4) The new approach enables to establish that Timoshenko's equation for the deflection of
the axis of a beam loaded by transverse forces

is rigorous in the case of uniformly distributed transverse forces.
(5) In the case of torsion of a prismatic bar by a linearly varying torque, the new approach

shows that Saint-Venant theory of torsion is still applicable, provided a certain distribution of
axial direct stresses (the same in all sections) is introduced. If the torque Mz varies arbitrarily
along the axis, these axial direct stresses vary also with z and are accompanied by corrective
shear stresses a1'>:1' A1',Z> which, in the case of a thin-walled beam with open cross section,
become identical to the u and l' stresses of the Timoshenko-Vlasov warping torsion theory.

(6) Finally, an important advantage of the new approach is that it is valid irrespectively of
the value of the ratio k = EIG of the elastic moduli. The results are therefore applicable to
materials weak in shear and, in particular, to shear-soft tubes representing approximately
multi-story buildings in the form on framed tubes.
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2. THE TECHNICAL THEORY OF BEAMS, CONSIDERED AS A RIGOROUS ELASTIC THEORY FOR
AN ADEQUATE ORTHOTROPIC MATERIAL

The basic assumptions of the theory of beams developed in Elementary Mechanics of
Materials are

(I) transverse direct stresses ax and Txy are neglected;
(2) the corresponding strains Ex> Ey and 'Yxy are zero, so that the cross sections may be

considered as rigid in their planes;
(3) in thin-walled beams, this rigidity postulates the existence of infinitely many transverse

frames, which should be rigid in their plane but could freely distort out of this plane;
(4) The bending stresses are approximately given by Navier's formula

a=Mxy
Ix

and the shear stresses T are derived from the a by pure equilibrium considerations. Various
approximate theories have been proposed. They all are based on the formula (Fig. I)

dR = TSdx
I

giving the longitudinal shear force acting on the horizontal section abed (Fig. I).
It can easily be shown that Mechanics of Materials can be established on a rigorous basis by

considering it as Theory of Elasticity applied to an orthotropic, transversely rigid material.
This approach has following advantages:
(I) bring some new results that have already been discussed in the introduction;
(2) clarify the relations between the technical doctrine called Mechanics of Materials and

Theory of Elasticity;
(3) extend to Mechanics of Materials the rigorous variational theorems of Theory of

Elasticity as well as Kirchhoff's unicity theorem.
In his book ([I] pp. 20, 21), Leknitzkii shows that, for an orthogonally anisotropic material,

the elastic stress-strain relations are

1 I I
'YyZ = -0 Tyz ; 'Yn =-0 Tn; 'Yxy =-0 Txy·

23 13 12

(2.1)

(2.2)

y

Fig. 1. Transversely loaded bar.
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The 12 elastic constants E.. E2, E3, 0 .. O2, 0 3, 1112, 112 .. lin, 113 .. 1123, 1132 are connected by the
three reciprocity relations

(2.3)

which leaves 9 independent constants.
To carry out the classical assumption of Mechanics of Materials, namely the indeformability

of the cross section, we must choose the elastic constants in such a way as to suppress all
deformations in the plane of the cross sections; this requires

and consequently,

Ex =0; Ey =0; 1xy =0 (2.4)

(2.5)

On the other hand, we wish to keep the beam isotropic under transverse shear. The cor
responding shear moduli must therefore be equal

0 13 = 0 23 = O.

In these conditions, eqns (2.1) and (2.2) reduce to

Ex = Ey = 1xy =0

E = CTr
r E

'1'
1xz = G

(2.6)

(2.7)

Moduli E and 0 are now entirely independent, which enables to consider materials very
deformable in shear, in which we shall see that the distributed shear lag will be especially large.

The counterpart, in Theory of Elasticity, of the elementary theory of beams, is the general
so-called "Saint-Venant problem", which amounts to find the stress, strain and displacement
fields in prismatic bodies acted upon (Fig. 2) by forces and moments applied to their end
sections. More precisely, the prismatic beam of length I is subjected at its free end to:

(l) a normal force N

z

x

Fig. 2. Internal resultants in a bar.
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(2) a vertical transverse force Px producing a vertical shear force Tx = Px and a linearly
varying moment My = Txz.

(3) an horizontal transverse force P, producing an horizontal shear force Tv Pv and a
linearly varying moment Mx Pyz.

(4) a constant torsional couple of moment Mz•

It will be shown in what follows that, when the material is transversely rigid as specified
hereabove, it is possible to find the rigorous solution, not only for above loading, but also for an
eccentric vertical loading uniformly distributed with the intensity p along the z axis. Led d be
the distance of these loads to the shear centre (Fig. 3). Then, obviously, the most general
loading combining the loadings of Fig. 2 and 3 is

N(z):= N

Tx(z) = To - pz

pz"
M\.(z) = -2+ Toz +C

and similar terms in Tv> M, for an eccentric horizontal loading

Mz(z) = Mzo + pdz.

The axial loading case has the trivial solution:

(2.8)

(2.9)

(2.10)

The two cases of uniform transverse loading are basically the same and we shall only study, in
Section 6, the first one, defined by the internal resultants

Finally, the torsional problem under a linearly varying torsional couple

Mz(z) =Mzo + zM~ (with M~:= pd)

(2.9)

(2.10)

deserves a special study (Section 3).
The two celebrated Saint-Venant problems correspond to p := 0; the first one is the uniform

torsion of a prism under a constant torsional couple. The second is the bending with shear under
a constant shear force To = Px and a linearly varying moment My := Toz.

We shall see that in both problems above, the solution is similar to that obtained by
Saint-Venant, which will be used as leading thread.

Fig. 3. Bent and twisted bar.
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In both cases, the new solutions involve constant transverse volume forces. These forces
are obviously necessary to introduce the transverse distributed force of constant intensity p.
Whether this force is produced by constant transverse surface tractions Tx, Ty, or by constant
transverse volume forces is completely irrelevant, because, if the transverse stresses ux, Uy are
obviously different in both cases, the deformations are not affected, because the material is
transversely rigid. Besides, in Mechanics of Materials, no attention is paid to these transverse
stresses.

3. TORSION OF AN ORTHOTROPIC PRISMATIC BAR, TRANSVERSELY RIGID, UNDER THE
ACTION OF A LINEARLY VARYING TORQUE

3.1 The displacement, strain and stress fields
We choose as origin the shear center 0 of the built-in section Oxy (Fig. 4). We must

obviously keep Saint-Venant's hypothesis of a rotation "en bloc" of the cross sections [2],
because here these cross sections are rigid. We add to the corresponding displacements u, v,
where ~ is the current angle of torsion, a warping displacement w proportional to the unit
torsion 8 "" d~/dz. We have thus

r~~PY
v "" +~x (3.1)

w "" 8t/J(x, y).

With

Mz = Mzo +zM~ (3.2)

M
(3.3)8=80 +8'z= d'

z
x

Mz

z
Fig. 4. Bar subjected to torsion.



38

where C is the torsional rigidity, and
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f' Z2
~ =10 8dz = 8' 2" + 80z.

the displacement field may be written

r u = - ( 8' ; + 80z) y

jv= ( 8' ~2 + 80z)x
w = (80 + (J~)"'(x, y).

The following components of the strain tensor

(3.4)

(3.5)

au av
E =-=0- E =-=0- Y

x ax • Y ay ,xy

as in the Saint-Venant problem.

(3.6)

aw
Ez = az = 8'"'(x, y) whence a z = EEz = E8' "'(x, y). (3.7)

The solution involves thus a distribution of axial direct stresses which is the same in all
sections, and which can be considered as the distributed shear lag of present problem. Finally:

(3.8)

whence

Txz = G(8' z +(0)(- Y + ~~)

(3.9)

The equations of compatibility are identically satisfied because the solution starts from the
continuous displacement field (3.1). We must therefore consider only the equations of internal
equilibrium, and thereafter the statical boundary conditions.

3.2 Equations of equilibrium
Suppose that there are body forces P, whose z component is zero. Then, the equations of

equilibrium reduce to

dTxz +F = O' iJ7'rz +F 0
dZ x • dZ Y

aT"z ~-O-+ -
ax dy

(3.10)

(3.11)

Equation (3.11) will be satisfied if we introduce Prandtl's stress function q,(x, y) as follows:

= G8 aq,(x, y). = _ G8 aq,(x, y)
T"z ay' TyZ ax (3.12)
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Equating (3.9) and (3.12), we have:

GO (- y + aI/J) = Go!i
ax ay

GO (x +1!J!.) = - GO a4J.
iJy ax

39

(3.13)

(3.14)

We eliminate I/J by differentiating (3.13) with respect to y, (3.14) with respect to x, and
subtracting; this gives

(3.15)

The boundary condition reduces here, like in Saint-Venant problem (if, for simplicity, we
suppose the cross section to be simply connected) to

ep = 0 on the boundary C. (3.16)

As these equations for <p are the same as in Saint-Venant classical solution, except that here GO
has been replaced by unity, the membrane analogy is still valid. The ordinates of this membrane
must however, vary linearly with z. It is easily verified that the external forces Tx = Txz and
Ty = 'TYI applied at the lower cross section (Fig. 4) have no resultants, namely that

LTn dxdy =LTYI dxdy = 0

and that they are equivalent to a torsional couple

(3.17)

(3.18)

We have not yet discussed the volume forces Fxo F,. that had to be introduced to satisfy eqns
(3.10). Replacing in (3.10) 'TXI and 'TYI by their expressions (3.12), we obtain

(3.19)

These forces have the same distribution in the cross sections as the shear stresses (3.12). They
have therefore no resultants (Rx = Ry = 0) and their couple around z is equal to the rate of the
torsional moment

L(Fy dx - Fx dy)dxdy =-2G8'L<p dxdy =M~. (3.20)

As said in previous section, these volume forces may be replaced by adequate surface tractions
producing, per unit length of the axis, the same rate of torsional couple M~.

3.3 Summary
In summary, above theory shows that:
(1) Saint-Venant's theory is still rigorously applicable to a beam made of the orthotropic

material defined in Section 2 if the torsional couple varies linearly along the axis; Membrane
analogy is still applicable but, everything else being equal, the cotes z of the membrane vary
linearly with z.

(2) The basis difference between the present theory and the classical Saint Venant solution
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is that, here, the beam is subjected to axial stresses

(3.7)

which have the same distribution in every cross section. These axial stresses being self-stresses,
that is, stresses in equilibrium with no external forces, we have necessarily

N =: E8' Lt/J(X, y)dA == 0; My"" E8' t xt/J(x, y)dA 0; Mx == E8' Lyt/J(x, y)dA == 0

(3.21)

In fact, these three integral conditions on the warping function t/J(x, y) are only satisfied if the
origin 0 coincides with the shear center and the axes Ox, Oy, are parallel to the principal axes of the
cross section.

(3) In above theory, no restriction is placed on the nature of the elastic material. The theory is
therefore applicable for any kind of orthotropic material, even those for which k =: EIG largely
exceeds the isotropic value 2(1 + v).

(4) The only restriction to the validity of the theory is the required existence of infinitely
many perfectly rigid cross frames. In particular, the theory applies to thin-walled beams with
closed or open cross section. The detailed developments of this possibility are left for another
paper.

4. APPLICATIONS OF THE GENERAL THEORY OF TORSION

4.1 Torsion of a bar with narrow rectangular cross section (Fig. 5)
We assume that b;;:. c, so that Prandtl's function is represented approximately by a parabolic

cylinder whose equation is, by (3.15)

The integration with 4> ::::: 0 for x::::: ± cf2 gives

C/2 C/2

(4.1)

b

,

I

I.
0

I.

\

x

y
Fig. 5. Narrow rectangular cross section.



A new approach (including shear lag) to elementary mechanics on materials 41

By eqns (3.13) and (3.14), we see that the warping function t/!(x, y) satisfies following
inequalities

at/! =y' at/! =x.
ax ' ay

The integral of this equation respecting the "self-stressing" conditions (3.Zl) is

t/!(X, y) =xy.

The warping longitudinal stresses are obtained by (3.7), which reduces here to

U z =EO'xy.

(4.2)

(4.3)

(4.4)

4.2 Torsion of a bar with elliptical section (Fig. 6)
From the classical theory of uniform torsion, we know (see [3], p. 317) that, for an elliptical

cross section, Prandtl's stress function is

(4.5)

while the warping function is

Formula (3.12) then gives

2a2 2b2

Txz =- GO a2 + b2 y; Tyz =+ GO a2+ b2x

while, by (3.7),

The body forces necessary to insure internal equilibrium are, by (3.19):

If a = b, the section of the bar becomes circular. In that case

I
~
y

Fig. 6. Elliptical cross section.

(4.6)

(4.7)

(4.8)
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and the stresses take their familiar values

T" '= - GOy; Tv, '= + GOx; U z = 0

predicted by Coulomb's theory of torsion.

5. TORSION OF AN ORTHOTROPIC PRISMATIC BAR, TRANSVERSELY RIGID, UNDER THE
ACTION OF A TORQUE M, VARYING ARBITRARILY WITH z

If M~ and 0 vary linearly with z, the corresponding axial stresses

(3.7)

do not depend on z. They do not induce corrections IlTw IlTyz, nor a warping torsional moment.
On the contrary, as soon as the law of variation of Mz is other than linear, the rate of torsion

is non zero and warping stresses are induced. To analyze this situation, let us admit that the
displacement field is:

U '= - f3y v = + f3x w = OljJ(x, y). (5.1)

Incidentally, the assumptions underlying eqns (5.1) are identical to those of the Timoshenko
Vlasov technical theory; indeed, they are:

(1) rotation "en bloc" of each cross section around its shear center;
(2) same warping as in uniform torsion.

The present displacement field induces the strain field

The stress field is therefore:

U z = EO'ljJ(x, y)

Txt '= GO(Z)(- y + ,~~)

Tvz = GO(z) (x + ~~).

The equilibrium of this stress field requires:

(I) transverse body forces

F = - GO'(z) a</>. F '= + GO'(z) a</>
x ay' ) ay

which are taken again by the transverse frames;

(2) the fulfillment of the third equilibrium equation

which, considering expressions (5.3), becomes

GO(z) (~+~)+E8"ljJ(x, y) = o.

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
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T

Fig. 7. Thin·walled tubular member subjected to torsion.

In the particular case of a thin-walled beam, the shear stresses are parallel to the median line of
the wall and (5.5) may be replaced by the equation (Fig. 7)

a1
as +E(J"(z)"'(x, y)::: O. (5.7)

Replacing O"(z) by f3"'(z) and integrating from a free edge or a point 0 where 7::: 0 (Fig. 7), we
obtain:

11::: - Ef3/1/(z)f ",(x, y) Ids.

If we compare this equation with the familiar Timoshenko-Ylasov formula (see [8,9])

/1 ::: Ef3'" f wi ds,

(5.8)

(5.9)

we see that they are identical provided the warping function I/!(x, y) is replaced by the sectorial
coordinate

w =w, - Wswith Ws:::f r ds and W, =~ lom w, I ds (5.10)

The physical significance of the sectorial coordinate w is thus simply to represent warping.
Once eqn (5.9) is established, all other equations of the Timoshenko-Ylasov theory follow
immediately. In particular, the direct warping stresses are

O'z =-Ef3"(z)w(s)

and the warping torsional moment is given by the expression

M/ = - E",'" lom W
Z Ids::: - Ct ","' with C.::: E lo

nt

W
Z Ids

(5.11)

(5.12)

It must be emphasized that the Timoshenko-Ylasov theory summarized hereabove is
approximate, because it neglects the deformational effects of the secondary shear stress (5.9)
due to warping restraint. The accuracy of this theory could be measured by evaluating the
magnitude of the secondary warping Wz, secondary direct stresses auz and secondary shears
a1z compared to the magnitude of W=w, u =- Ef3"w, 11 =Ef3'" It wi ds. In the case of open
cross sections, the Saint-Yenant torsional rigidity C is low, and the warping over the cross
section is large. In comparison with the primary, Saint-Yenant shear stresses 7h the secondary
shear stresses 7Z due to warping restraint and given by (5.9) are small, so that their defor
mational effects may be neglected. On the other hand, their effects on torsional equilibrium are
not negligible, because of the large lever arms with which they act (which are of the order of
magnitude of the cross-sectional dimensions).
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The torsional behaviour of tubular members is entirely different. The contribution of the
shear stresses distributed bi-triangularly over the wall thickness to the internal torsional
moment is negligible. The torsional rigidity associated with constant distribution of the T

stresses across the thickness, which was first established by Bredt, is very much greater than
the Saint-Venant torsional rigidity of the sliced tube, while the natural warping and the primary
torsional stresses are much smaller. Hence, it follows that the warping influences in box
sections are much smaller than in open sections and that, nevertheless, the secondary shear
stresses (which now, like the primary ones, are uniformly distributed over the wall thickness)
are usually of the same order of magnitude as the primary torsional stresses.

In conclusion, in the case of a tubular member, it is not permissible to neglect the
deformational influence of the warping shear stresses in relation to that of the primary torsional
stresses. Therefore, for a tubular section, formulae (5.1)-(5.8) are rigorous if 8 varies linearly
and 8' is constant. But, for other laws of distribution of the torsional moment, above formulae
differ too much from the rigorous solutions.

In that case, an approximate solution sufficciently accurate for practice has been given by
Heilig[4] while von Karman and Chien[5], Argyris and Dunne[6J, Benscoter[7] and others have
given exact, but very complicated solutions.

6. BENDING WITH SHEAR OF AN ORTHOTROPIC, TRANSVERSEL YRIGID, PRISMATIC BAR
(FIG. 8)

6.1 General
We suppose that the shear force T varies linearly, and therefore the bending moment

quadr.atically, with the longitudinal coordinate z; in agreement with (2.8) and (2.9)

T(z) = To- pz (6.1)

The theory will develop about the same general lines as the classical Saint-Venant solution,
except that:

(1) The material is orthotropic, transversely rigid, so that the cross sections QO not deform in
their plane; the stress-strain relations are, as in Section 2:

€, = €y =Y,y = 0

(6.2)

(2) The stresses (fn (fy, T,y are zero as in Saint-Venant's solution. However, (fz is not any

y

Fx

x
Fig. 8. Bending with shear of a bar.
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more given by Navier formula, but contains a corrective term dO' representing the distributed
shear lag, which does not depend on z. The determination of dO' is, incidentally, the most important
point of present theory.

In agreement with above assumptions, we postulate that the stress field is

(6.3)

(6.4)

(6.5)

It remains to choose the functions dO', Txz and Tyz in such a way that:

(a) the equations of internal equilibrium;
(b) the statical boundary conditions;
(c) the conditions of compatibility

are satisfied.

6.2 Equations of equilibrium
Assuming the existence of volume forces F; having only transverse components, Fx , Fy, we

find that the equilibrium equations reduce to:

aTxz + F = 0az x

~+F =0az y

aTxz +~+ .! (- + T.) = 0ax ay I pz 0 •

This shows that it is possible to satisfy these equations by putting

Txz = (- pz + TO)Txo(X, y); Tyz = (- pz + To)Tyo(X, y).

Substituting in (6.6) and (6.7), we find volume forces

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

which are the same in all sections. On the other hand, it is easy to verify that the only
non-trivial equation, namely (6.8), is satisfied by following expressions, inspired from Saint
Venant solution

(6.11)

where cf>(x, y) is a stress function depending on x and y and f(y) is a function of y alone that
will be determined later. Volume forces Fx and Fy are absorbed by the rigid transverse frames.
It is easy to show that the resultant of these forces is equivalent to the unit vertical transverse
force p. Indeed, the further discussion of the boundary conditions (see Section 6.4 hereafter)
will show that this unique boundary condition (6.27) reduces to cf> = 0 along the contour
provided we choose f(y) to annul the right-hand member of (6.27). Then, we have

qy = pLFy dxdy = - pL~ dxdy = - p fdy L~ ~~ dx =0

qx = LFx dxdy = p[f dx L:'*"dY -2
1
1Lx

2
dA +Lf(y)dxdy ] =

p [L f(y) dxdy -lJ. (6.12)

We shall show that the last bracket is always equal to unity, so that q" = p as it should be.
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6.3 Compatibility equations
The general compatibility equations are ([2])

2 , 2 2
2 a f x = _ a"yyZ + a Yxz + a Yo

ayaz ax2 axay axaz
2 2 ., '}

2~ = _ a Y.u + a"yXY + a'y,z
axaz ar ayaz axay (6.14)

To obtain equations equivalent to the Beltrami-Michell equations, we must replace the fij by
their expressions in terms of the aij valid for the orthotropic, transversely rigid material
discussed in Section 2. Taking account of eqns (6.3), (6.4), (6.9) and (6.11), we express the strain
tensor as follows:

(6.15)

Yxy = 0

Replacing in (6.13) and (6.14), we find

0=0

1 a2(Aa) _ p irjJ
E----ayr - G axay

Txy = 0

(6.16)

(6.18)

(6.19)

(6.20)

(6.21)

Equations (6.19) and (6.20) determine rjJ(x, y), while the three others [(6.17), (6.18), (6.21)]

determine Aa(x, y) and fey). (6.19) and (6.20) may be written

(6.22)

(6.23)
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These relations yield
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(6.24)

where C is an integration constant. It can be shown [cf [2], p. 309] that, if not torsion occurs, C
is equal to zero.

6.4 Boundary conditions
It is easily seen that the two first boundary conditions are identically satisfied and that the

third gives:

(6.25)

Figure 9 shows that

I =cos (v, x) =~~; m =cos (v, y) =- :;,

whence (6.25) becomes

dy dx
TXI ds - TYI ds = O. (6.26)

Introducing in (6.26) the expressions of the stresses resulting from (6.9) and (6.11) and
simplifying by (- pz + To), we get the equation:

aq, dx + aq, dy (= aq,) =[X2_ f( )] dy
ax ds ay ds as 2I y ds

(6.27)

The values of (/J along the boundary C are determined by this equation if we choose a definite
expression for the function f(y). Differential equation (6.24) plus boundary condition (6.27)
determine completely q" as we shall see in Section 7 devoted to practical applications. The
simplest way is to choose function f(y) to annul the right-hand member of (6.27).

6.5 Determination of d(J'(X, y)
The three remaining compatibility equations read:

Y---t-----,

(6.17)

\l

X

Fig. 9. Boundary conditions.
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a2(aO') = _ pE (£121> _::)
ax2 G axay I

£1
2
(110') == pE (~_ ali{ _ d/ )

axay 2G ax- ayr dy .

(6.18)

(6.21)

For each type of cross section, one must find the distribution of 110' == 1l00(X, y) which satisfies
(6.17), (6.18) and (6.21). This distribution will obviously depend on the value obtained for
function 1>(x, y). In Section 7, this technique will be illustrated by studying successively the
circular cross section, then the rectangular narrow section.

6.6 Determination of the displacements-deflection curve of the axis
The displacement field (u, v, w) is determined, within a rigid movement, by the six first order

partial differential equations:

au av au av
Ex == ax = 0 (6.28); Ey == £1y == 0 (6.29); 'YXY == £1y +ax :::: 0

€2 == £1w = O'z =~ (_ pZl + Toz + c) + 1l00(x, y)
£1z E El 2 E

au aw 1 [£11> x
2 ]

'Yxz == £1z + ax = G (- pz + To) £1y - 2I + I(y)

'V == av + oW = _1..(_ pz + To) 01>.
IYZ oz oy G ax

Integrating (6.31), we find

Equations (6.32) and (6.33) give then

(6.30)

(6.31 )

(6.32)

(6.33)

(6.34)

(6.35)

Integrating these equations, we find:

(6.36)

==_1.(_ PZ2+T. )otP_..£.o(IlO')_zawo(x,y)+!(X y). (6.38)
v. G 2 oZ oX 2E oy ay 2,

Introducing these expressions of u and v into the three homogeneous equations (6.28)-(6.30),
we obtain 3 lengthy equations that are not reproduced here. The coefficients of Z2, ZI and ZO in
each of these three equations must separatdy be equal to zero.
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This gives the nine conditions

L (a
2

t/J X) ..l. a
2
(40') - 0

20 axay I 2EiJi'l-

To ( a
2

t/J _!) _a
2

Wo =0
o iJxay I axr
all =0
ax

P iJ2t/J 1 a2(40') 0
20 axay - 2E ----ayr- =

To a2t/J a2wo
- 0 axay -87 0

aux, y) =0
ay

_L[a2<p+df(Y)J __l a2(40')+Lil2Y__l il2(40'}=0
20 ayr dy 2E axay 20 axr 2E iJxay

To [il2t/J +d/(y)] _ To a
2
", _ 2 iJ2W!! =0

o ay2 dy 0 axr axay

all +2b. = 0
ay iJx
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(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.41) gives II =ft(y}, then (6.44) gives 11= K (constant); (6.47) gives then al21ax = 0, then
12 =hey). (6.39) is identically satisfied by (6.18), (6.42) identically satisfied by (6.17) and (6.45)
identically satisfied by (6.21). We are thus left with eqns (6.40), (6.43) and (6.46) which should
permit the determination of the function wo(x, y). These equations may be written:

a2Wo_ To (ll.._!)axr - 0 iJxay I

a2wo To a2t/J
87= - 0 axay

a2wo = To [iJ2<p _ a2t/J +d/(y)]
iJxiJy 20 ay2 ax2 dy .

(6.48)

(6.49)

(6.50)

This shows that wo(x, y) is at any point proportional to 4u(x, y). Indeed, eqns (6.48)-(6.50)
become identical to eqns (6.17), (6.18) and (6.21) if one puts

wo(x, y) =- :~ 40'(x, y) +arbitrary linear function. (6.51)

If we adopt this expression for wo(x, y), we see that the displacement field is completely defined
by eqns (6.34), (6.37) and (6.38), that are rewritten as follows:

1 ( pZ2. )(aA. x2 ] I ( pl To 3 Cz2 ) ( Z2 zT. ) iJ(40')U=- ---fToZ :::t:. __+/(y) -- __+_l+-+Dz+F 0 __o 2 ay 2I EI 24 6 2 2E pE ax
+K (6.52)

v =_.!.. (_Et+ Toz) at/J _ (.L_ ZTo) d(4u)o 2 ax 2E pE dy

x ( pZ3 Z2 ) (1 T.)w=- --+To-+Cz+D + -_-!!. 40'(x y)EI 6 2 E pE ,.

USS Vol. 19, No. 1-0

(6.53)

(6.54)
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The deflection curve of the beam is V(z) == [uJ ~ :~. Equation (6.52) gives

1 ( PZ4 r, Z3 eZ
2

) 1 ( PZ2 ){ (a4» }V(z) - 0 +K+- --+Toz - +f(Y)d
EI 24 6 2 G 2 ay x~Q .

y~O

_(£_ ZTo)[a(Au)]
2E pE ax x~O

y~O

(6.55)

Taking account of expression (6.1) of the bending moment, one verifies easily that the first term
of the right hand member of (6.55) is the classical deflection, obtained by integrating the well
known differential equation

(6.56)

The second term of this right hand member should therefore be the correction ~V due to the
shear deformation.

In the elementary theory proposed by Timoshenko, AV obeys the differential equation

(6.57)

where A' is the so-called reduced section for shear.
The integral of (6.57) is

(6.58)

where Q and R are integration constants. Comparing (6.58) with the second term of (6.55), we
see that we must have

(6.59)

In the common case of beams with doubly symmetrical sections, a(~a)1ax is an even function
in x, which is zero for x = O. In this particular case, one finds that the exact value of the reduced
section for shear is

A'
(

iJ4» .
[J(y)]y=o + ay x ~ 0

y=Q

(6.60)

7. PRACTICAL APPLICAnONS

7.1 Bending with shear of a beam with circular cross section
7.1.1 General. Let

(7.1)

be the equation of the circular contour of the cross section. The right hand member of
boundary condition (6.27) becomes zero if we take

1.2 2
f(y) = 2I(r - y ). (7.2)
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(7.3)
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Replacing in eqn (6.24), one sees that the stress function is defined by equation

a2q, a2q, y
ax2 + al =]

and the condition q, = 0 on the boundary. It is easy to see that eqn (7.3) is satisfied by taking for
stress function the expression

(7.4)

where m is a constant. This function is zero on the boundary (7.1) and satisfies eqn (7.3) if we
take

(7.5)

7.1.2. Computation of the shearing stresses. The shear stresses Txz and Tyz are deduced from
(7.3) by eqns (6.9) and (6.11). We obtain

Txz = (- pz + To) 8
1
1 (3r - 4x2

- i)

xy
Tyz = -(pz + To) 41' (7.6)

The vertical shearing stress Txz is an even function of x and y and the horizontal shearing
stress, Tyz, an odd function of the same variables.

Along the horizontal diameter of the cross section, x = 0 and one finds by eqns (7.6)

- pz + To ..2 2
(Txz)x=O = 81 (3r - y ).

The maximum shearing stress occurs at the center (y =0), where

(7.7)

(7.8)

It is interesting to compare this value with the value obtained by Saint-Venant for an isotropic
material, namely ([2])

( ) iSOlrOpic _ 3+2/1 Tr _ 0346 Tr (f - 03)
Txz max - 8(1 + /I) 1 -. 1 or II - •

The shearing stress at the ends of the horizontal diameter (y = ± r) is

The isotropic value found by Saint-Venant is

( ) isolropic _ 1+211 Tr _ 0308 Tr (f - 03)
7'xz y=:i:r - 4(1 + II) 1 -. 1 or II - •

The elementary theory given in Mechanics of Materials leads to the constant value

Tr Tr 4 T
(7'xz)x=o =Ti =0.333 T =3A

along the horizontal diameter.

(7.9)

(7.10)

(7.1 1)

(7.12)
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One can easily verify that
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LTXt dA:::: T (7.13)

which means that the Txt stresses equilibrate exactly the shear force. It can also be verified that the
volume forces F. given by (6.10) are equivalent to a constant transverse force p. Indeed.
introducing the expression (7.2) of f(y) into eqn (6.12), we obtain

because A = 1Tr and 1= 1Tr4/4.

7.1.3 Computation of the corrective stress t:.0' representing the shear lag. The corrective
stress t:.O'(x, y) must satisfy conditions (6.17), (6.1S) and (6.21). Taking account of the
expressions (7.5) of ¢(x, y) and (7.2) of f(y), we get

a2(t:.0') pE
--=-x

al 4GI

a2(t:.0') 3pE
---;;;r-:::: 401 x

a2(t:.0') _ pEy
axay - 40r

Integrating these equations, we find respectively:

pExl
t:.a:::: SOl + yf(x) +g(x)

pEx3

t:.u:::: SOl +xh(y) +k(y)

pExy2
t:.a:::: 401 +l(x)+m(y),

(7.14)

(7.15)

where f, g, h, k, I and m are arbitrary functions. The three expressions above are satisfied if we
take

pE (2 2)t:.a(x, y)=SOIX x - Y •

This expression satisfies following necessary conditions:
be proportional to p;
be proportional to EIO;
be odd in x.

(7.16)

7.1.4 Value of the reduced section for shear. Applying eqn (6.60) and using expression (7.1)
of f(y), and expressions (7.5) of ¢(x, y), we find

(i!!1) fl fl . I 21Tfl 2
ay .=0 = - SI; [f(y)]y=o 2I and, therefore A :::: -3- =3' A.

y=O
(7.17)

7.2 Bending with shear of a beam with narrow rectangular section (Fig. 10)
We treat essentially this case for control, because we must retrieve the solution obtained

directly by considering the problem as a problem of plane stress (see companion paperI
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a1
.Gy

a

X

Fig. 10. Rectangular cross section.

The boundary of the rectangle has for equation

(7.18)

If, in eqn (6.27) we replace f(y) by the constant a2/2I, the expression

becomes zero along the sides x = ± a of the rectangle. Along the vertical sides y = ± b, the
derivative dy/ds is zero. The right hand member of boundary condition (6.27) is thus zero and
we may take cP =0 on the boundary. The differential equation (6.24) reduces then to

(7.19)

When a is large with respect to b (Fig. 10), we can accept that, for points sufficiently remote
from the small sides of the rectangle, the membrane representing t/J is substantially cylindrical.
Equation (7.19) reduces then to

a2q,
--:;::r = 0ay

and its general integral cP =Ay +B is zero because cP must become nought for y = ± b. The
first formula (6.16) gives then simply

(7.20)

that is the parabolic distribution of Mechanics of Materials. We have now to determine the
correction 4u, identical to the distributed shear lag. Introducing cP =0 and f(y) =a2121 into
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eqns (6.17), (6.18) and (6.21), we find:
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a2(~U) _ 0-ay-
a2(~u) _ pE
---;;T - GJ x

a2(~u) =: O.
axay

(7.21)

The most general expression satisfying the three eqns (7.21) is

(7.22)

The arbitrary constants M and N are determined by stipulating that the ~u must have Zi

resultant and zero moment. This gives

Therefore (7.22) becomes

(7.23)

what is exactly the expression found in the companion paper [10].
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